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HOMOGENEOUS QUANTUM ELECTRODYNAMIC TURBULENCE

John V. Shebalin 1

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681, USA

The electromagnetic field equations and Dirac equations for oppositely charged wave

functions are numerically time-integrated using a spatial Fourier method. The numerical

approach used, a spectral transform technique, is based on a continuum representation of

physical space. The coupled classical field equations contain a dimensionless parameter

which sets the strength of the nonlinear interaction (as the parameter increases, interaction

volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-

evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In

the truncated Fourier representation which is numerically implemented here, the quantum

turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of

equilibrium modal spatial spectra for the probability density of each particle and also for the

electromagnetic energy density. The results show that nonlinearly interacting fermionic wave

functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be

determined by numerical means.

1Research supported by the National Aeronautics and Space Adminsla'ation. The author is currently in
residence as a Visiting Scientist at the Institute for Computer Applications in Science and Engineering (ICASE),
NASA Langley Research Center, Hampton, VA 23681.
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1. Introduction

A direct numerical simulation of the self-consistent electromagnetic interaction

between two oppositely charged and densely packed spin 1/2 Dirac particles is presented

here. While the approach taken here is nonperturbative, it is not based on lattice gauge

theory. Instead, it is a solution of the basic set of coupled, nonlinear partial differential

equations which describe a fundamental quantum mechanical system in terms of classical

field theory. These equations are integrated forward in time to simulate the nonlinear

evolution of two Dirac wave functions and the electromagnetic field which couples them.

The means of solution is a Fourier spectral method, in which a three-dimensional

momentum space (k-space) is restricted to contain only a finite number of discrete modes

(i.e., Ikl<kml0. Although k-space is discretized, position space (x-space) is not: The

underlying physical space is a continuum and not a discrete set of points. The Fourier

spectral method has been used to great advantage in pioneering work in turbulent flow

simulation [1] and continues to be used in the study of turbulence and other nonlinear

dynamic phenomena.

Since the interaction of strongly coupled fields is essentially nonlinear, it is

generally not possible to assign a specific frequency to each spatial mode. The actual time

dependence of the Fourier modes is found by integrating the equations of motion, after

which a time sequence for each mode may be analyzed to determine its frequency content

during the sampling time. However, it must be remembered that in the evoultion of a

nonlinear dynamic system the frequency content of a mode is constantly changing, as the

various modes are nonlinearly interacting with one another. To robustly determine the

frequency spectrum for any mode requires that a simulation be run considerably past the

time at which the initial conditions are 'forgotten' by the nonlinear system. That is

computationally expensive (for a large number of grid points) and will not be done here,

although the simulation will be run long enough to see the establishment of spatial

equilibria for the interacting wave functions.



Strongly interacting quantum mechanical wave fields can exhibit the same

interesting nonlinear dynamic behavior seenin fluids and plasmas, i.e., chaos and

turbulence. (Chaos and turbulence are related in that turbulence may be thought of as many

degree-of-freedom chaotic motion, while "classical" chaos appears, for example, when the

mathematical model of a turbulent hydrodynamic system is reduced to a minimum number

of degrees-of-freedom [2].) Here, the continuous wave functions and electromagnetic field

play a role similar to that of conserved components in a mixture of classical fluids; for

example, probability densities are analogous to component mass densities as both satisfy

identical continuity equations. Turbulent behavior will be seen in the dynamic transfer of

energy and probability between different spatial modes and in the establishment of apparent

equilibrium modal spatial spectra.

Again, it is the electromagnetic interaction of oppositely charged spin-1/2 particles

(an "electron" and a "positron") which we examine here. This classical "lepton-photon"

system is described by Dirac equations and the electromagnetic field equations. Although

replacing the Dirac equations with Schr6dinger equations also produces a system which

contains the nonlinear electromagnetic interaction, the coupling parameter is small and the

nonlinear interaction is weak. The coupling parameter will be seen to increase as the

density of particles increases; concomitantly, the mean particle velocity will become more

and more relativistic. Thus, the description of a lepton-photon (or any fermion-gauge field)

system with a strong nonlinear interaction requires the use of the Dirac equation, rather than

the Schr6dinger equation.

In this paper a first-quantized or "classical" field description will be utilized, which

will allow us to follow the self-consistent evolution of the oppositely charged, two particle

quantum mechanical system. The basic equations will be given in nondimensional form,

followed by the classical Noether invariants of the system. Then the numerical method will

be described, and numerical results will be presented.
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In additionto observingturbulencein aquantummechanicalsystem,thenoveltyof

theworkpresentedhereis thatit introducesa new,nonperturpativeanddirectapproachto

studyingthegaugefield interactionof closelypackedparticles,suchasthosein extremely

densematter. The currenthistorical context is similar to that encounteredwhen time-

integrationmethodson a spatialgrid wereintroducedinto thestudyof generalrelativistic

flow problems[3] andinto nonrelativisticquantumprocesses[4], i.e., although previous

analytical and numerical techniques have produced and continue to produce many valuable

results, time integration methods allow the problem at hand to be solved (and visualized)

directly.

A study of coupled nonlinear Dirac equations in four dimensions has appeared

before, in the work of Alvarez [5], where soliton-like behavior was examined. In that

work, however, the mediating gauge field was eliminated by introducing ad hoc terms into

two separate free-particle Dirac equations so as to produce a direct nonlinear coupling.

Here, we study two classical Dirac fields realistically coupled by an electromagnetic field

and, in this case, do not find the 'blow-up' problem which appears in the direct nonlinear

coupling model [6]. The approach taken here is also generically similary to that of

Bialynicki-Birula, et al., who have recently examined the self-consistent time evolution of

quantum fields in terms of the Wigner distribution function [7].
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2. Basic Equations

The Dirac equation is (here, standard notation [8] is used)

y_t(pg-c_Ag)qJ = mcV, p_t - i2-_--0_t. (1)

For electrons, e is the negative electronic charge and for positrons, e is the positive

electronic charge; m is the electron or positron mass, c is the speed of light, and h is

Planck's constant. Explicitly, the (4x4) Dirac matrices are

i=[1 0], fYx =[0 1_, CYy =[0-_], (Yz = [1 _0], (2)

(Greek indices range from 0 to 3 with a metric signature of +---, while Latin indices range

over 1, 2, 3 (i. e., x, y, z) with a metric signature of +++; repeated indices imply

summation. Also, boldface denotes a 3-vector.)

The electron and positron wave functions are complex entities and will be expressed

here as

We=R+iS= R2 +1 $3 '

LS4J
iWp=P+iQ= P2 +i

P3

P4 LQnJ (3)

where the Ri, Si, Pi, and Qi (i= 1,2,3,4) are real functions of time and position. Coupled

with the Dirac wave equations are the electromagnetic field equations (using the Lorentz

gauge condition):
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v A.--letj"=leJ

j_ - W_7_tW_, j_ - WpTgWp,

a_tA_t = 0

(4)

The conservation of probability is guaranteed by the continuity equations each wave

function satisfies: aojr'=a,p+V-j=0, where j_ = (P J) corresponds to either particle.

At this point, we will nondimensionalize equations (1) and (4). Since a spatial

Fourier method will presently be used for numerical simulation, units of distance will be in

terms of Lo/2rt, where Lo is the side length of the periodic physical cube. Using the operator

equivalence given in (1), the nonlinearly coupled, nondimensional dynamic equations are

7_t(a_t +iA_t)_e =-iWe, 7_t(O_t-iA_t)hUp =-iqJp

(o_2- V 2) A_ = K (j_-j_p), a_AIl = 0 (5)

These equations contain only one parameter which determines the nature of the interaction:

_Lo! (6)

where the Compton wavelength of the electron is _.c = h/mc = 2.43 pm and the fine-structure

constant is o_ = 2ne2/hc = 1/137. Here, Ws (s=e,p) is normalized so that the integral of js°

over the characteristic volume Lo3 is equal to unity Note that for the interaction parameter to

have a value of unity (K = 1), then Lo = ala_. c = 0.47 pm and the density of particles must be

around Lo-3 = 10 31cm.3; electrons at densities up to 10 37cm.3 are believed to exist in the

outer layers of neutron stars [9]. This density is also achieved by scattering particles whose

'interaction time' is at least 10-21 seconds, i.e., 'resonant' particles.



3. Noether Invariants

The classical invariants [10] of the electromagnetically interacting electron-positron

system can be derived from the Lagrangian density

= *-- Is q.tpy (D_Wp)-(Di.t_p)y_Wp]A ½[_-g-eT_t(DixWe)-(Di.t_e)y We+-- ;t *

- WeW e - x-I/p_I/p - _-F_vFIs v (7)

where the "covariant"

respectively,

derivative Dtt and

DIs = 0_+iAIs,

the electromagnetic field

F_tv -= OIsAv-0vAIs.

tensor F_tv are,

The nondimensional volume of the 3-space cube is (2rt)3; an integral over this volume is

(Q) m _ Q(t,r)dr

a definition which allows for notational conciseness. Using Noether's theory [10] (along

with _¢= 1), the important classical invariants are found to be

Normalization (total probability):

Np = (j_) =-(_-P-py°Vp) (8)
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Energy:

E = (-i_ey" V +e-i_py" V 'if'r, +_eWe +_pWp-A "(je-jp)+ _(IEI2+IH 12))

( E ----_tA -VA °, H- V×A, je -= WLyWe, jp - _pYqJo) (9)

Momentum:

P = (p>- <-iu/--'ey°V _Pe -i_py°V q"p +A(j_- jo)+ ExH) (10)

Angular Momentum:

J = (rxp +l_ct%_t°_ _I'te +ltI/--'-p_°_ _r/p + Ax_tA), (11)

The invariants (8) through (11) are classical and the fields contained in them are not

considered to consist of explicit creation and annihilation operators [10]; according to the

tenets of Lagrangian field theory, these invariants should be preserved during the time-

evolution of a closed system. The invariance of a numerical model based on equations (5)

will be examined in the next section. (The specific parts of these invariants which are

associated with either the electron, positron, or photon fields, or with their interaction, can

be easily separated out of the total expression and examined individually, as required.)

7



4. Numerical Results

Using the equations given in (5), the time-evolution of the lepton-photon system

was simulated on a 32x32x32 k-space grid. Simulations were performed using a spatial

Fourier transform method [I I ] with a de-aliased [12], third-order time-integration scheme

[13] (this approach is somewhat similar to that used in nonrelativistic quantum mechanics

simulations [14]). For numerical simulation, the equations (5) are expressed as follows:

DtVe=-[_.V + i(D + q>-t_'A)]V e, _ttIJp = -[cz'V + i(_-q) + o_'A)]tPp

DtC = V2A + ',<(je- jp), DtA = C, D,tp = -V. A

= A °, Je _- x'I'te_IJe, Jp -= _llp_/_p (12)

If we set _:=0 and assume that cp and A are initially zero, then the equations for We and q-'p

are linear. In this case, both We and Up have linear solutions OF being either one):

W(x,t) -- _ [cos((Okt)- i(o_'(]3 +a-k)sin(mkt)]a)(k)e ik'x
k (13)

where _(k) is a time-independent, complex, four component column vector and f.0k =

(k2+l) _f2. The lowest frequency is obviously C0o= 1, with a corresponding period of To =

2n. Even though we will examine non-linear behavior (1,:>0) and will not utilize (13)

further, (13) indicates that a simulation needs to be run from t=0 to at least t=To.

The fields which comprise the system (12) are seen to be, using (3),

R1, R2, R3, R4, $1, $2, $3, S4

cp, Ax, Ay, Az, Cx, Cy, Cz

Pl, P2, P3, P4, Q1, Q2, Q3, Q4 (14)



In thenumericalmethod,theseareexpandedin terms of spatial Fourier series, for example,

Rl(x,t) = E Rl(k,t) e ik'x
k (15)

Thus, the few non-linear partial differential equations in (12) are transformed into many

non-linear ordinary (in time) differential equations.

In addition to the equations in (12), there is also an auxiliary condition which must

be satisfied:

where

-V2q) = K(pe - pp) +V'C (16)

m

pe =j° = Wel3Ve, pp = j_- Wpl3Wp. (17)

Equation (16) arises when the Lorentz condition and the wave equation for the electric

potential q_ are combined. Thus, in (14) q_ is not an independent dynamic variable;

however, either (16) or the Lorentz gauge Otq0 = -V. A can be used to determine q) during

the dynamic evolution of the system (whichever is more computationally efficient - here the

Lorentz condition is used). Initially, however, (16) is always needed to determine q0.

In a spatial Fourier method, the Lorentz condition is dq0(k)/dt +ik-A (k) = 0, and

a gauge transformation of the electromagnetic fields has the modal form {A(k), C(k)}---_

{A(k)- ik0(k), C(k)- ikd0(k)/dt}. Here 0(k) satisfies the modal wave equation

d20(k)/dt 2 + k20(k) = 0. Under a gauge transformation, the modal form of the change of

the quantum mecahnical wave function is W(k)---) {exp(i0)W}(k); i.e., the modal gauge

transformation is just the spatial Fourier transform of the physical space gauge

transformation, as long as all possible modes k are retained. This last stipulation results

from the observation that the spatial Fourier transform of exp(i0) must have an infinite

number of modes, and the numerical method cannot de-alias a quadratic product where one



of the cofactorsis known to containmore than thetruncatedsetof modes. However, if

invarianceunder only an infinitesimal gaugetransformationW(k)--_ {(1+ i0)W}(k) is

required (at each numerical time-step), and 0 is restricted to contain no modes outside the

truncated set, then the numerical method is gauge invariant.

In the present numerical method, each field (for an NxNxN spatial grid) has

approximately 0.4388 N 3 degrees-of-freedom (real and imaginary parts of independent

Fourier modes). Thuseach of the fields in (14)for a 323 grid has about 14400 degrees-of-

freedom, and since there are 22 independent fields, the model system has a total of about
$7

320,000 degrees-of-freedom. Computationally, this means that we have this many

coupled, nonlinear, ordinary differential equations to solve. (Although it will not be done

here, an an N=64 simulation is also be possible. This, of course, requires a

correspondingly greater investment of computer resources.)

One long simulation will be presented in detail here. This was run on a Cray YMP,

with a cpu time per simulation time step of about 14 seconds for N=32. The coupling

constant was _c = 1 and the initial conditions were such that only R1 $2, P2, and Q_ were

nonzero with <R12>=<$22>=< P22>=<Q12> (i.e., neither the electron nor the positron had

any initial kinetic energy, linear momentum, or angular momentum). Initially, R1 $2, P2,

and Q1 were described by spatial three-dimensional gaussian density distributions centered

on the grid points (8,16,16), (16,8,8), (24,16,16), and (16,24,16), respectively; all had

standard deviations of 8 grid spacings and were set to zero beyond one standard deviation

from their respective centers. Also, at t = 0, A = C = 0, and 9 was determined by (16).

Each computational time step advanced the system At=0.000125 simulation time units.

During the simulation, which ran from t= 0 to 6.3 (i.e., 2n), the normalization of

the electron and positron wave functions was conserved to 1 part in 10 6 (thus, total charge

was conserved to this accuracy, and there was no 'blow-up' [6]). The total energy given in

(9) was also conserved extremely well, fluctuating no more than 0.04 % during the run.
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Thus, the Noether invariantsof nomalization(i. e., total charge, probability, or particle

number) and energy were essentially conserved during the run.

Another measure of numerical efficacy lies in behavior of the "center of inertia" R

of the system, which should remain fixed (since the P=0 at t=0) for both runs. Here, we

define R as

R(t) = dt

(18)

where P is the total momentum, as given by (10), and E is the total energy, as given by

(9). Since the edge length of the computational 3-D volume is 2rt, the percent variation is

defined as 100%×lR(t)l/2rc. The fluctuation in the center of inertia was less than 0.4 %,

commensurate with the numerical variation in energy.

To get an appreciation of the difference between linear and non-linear evolution,

consider Fiqure 1, where the linear and non-linear time dependence of the Fourier

coefficients R_(k,t) and S_(k,t) for k=0 is compared (for k=0, all coefficients are real).

According to (13) the linear behavior of the pair should be R_(0,t)=cos(t) and S_(0,t)=-

sin(t) (for this figure, the amplitude has been normalized to unity). The actual trajectory of

the pair is obviously different from the linear prediction; there are clearly many more

frequencies present than just the single one corresponding to the linear mode. In fact, if the

behavior of any coefficient is examined in a similar manner, the same behavior will be seen:

a 'random walk' around the origin.

To get another view on the dynamic evolution of the model system, let us break up

the total energy (9) into its constituent parts:

E I =(-A "(je-jp}), EEM = (_-(I EI2+IH 12}) (19)

11



Here we have defined the "electron'senergy" Ee, "positron's energy" Ep, "interaction

energy" E_, and electromagnetic energy EEM. The evolution of these energies is shown in

Figure 2.

Next, consider the quantities

i=1,2,3,4 (20)

These are just the contributions each component makes to their respective normalization

integral (8). Their time evolution is given in Figures 3 and 4 for the electron and positron

fields, respectively.
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5. Quantum Mechanical Turbulence

Let us now take up the matter of nonlinear dynamics and turbulence in this multi-

mode quantum mechanical system. The parameter _ plays a role in (12) analogous to that

played by the Reynolds number in fluid turbulence, i. e., as these numbers tend to zero the

nonlinear effects in the respective systems disappear. A characteristic of turbulent behavior

is the manner in which energy (or probability) is shared nonlinearly between different

modes. This is illustrated for the present simulation in Figures 5 and 6, where the wave

number spectra of the electron probability density and electromagnetic energy density,

respectively, at several different times are shown. (The positron spectra are very similar to

the electron spectra.) (In a 323 run, the maximum wave number is 15.07, and thus

log(kmix)=1.17). The spectra shown in Figures 5 and 6 are derived from the modal

densities by finding the average over all k with the same magnitude Ikl=k, and multiplying

this average by k 2. These "omnidirectional" spectra are, explicitly:

k2/ /+S <k l

(21)

Here, N(k) is the number of terms in the summation over k such that Ikl=k. (The values of

Pe(k) and Peru(k) shown in Figures 5 and 6, respectively, are smoothed by averaging over

nearest neighbors.)

The shape of the spectra at t = 0 is the initial spectra (in a linear run, where n=0,

these spectra do not change shape at all with time). As is seen in Figures 5 and 6, there

was a considerable amount of energy and probability transfer between the different modes;

in fact, all the spectra appear to be converging to equilibria.
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It should be possible to predict these spectra a priori as is done, for example, in

ideal three-dimensional magneto-fluid turbulence [ 15], since the system of equations (12)

satisfy all the criteria necessary for 'absoulte equibrium ensemble' theory to apply [16]. In

particular, a partition function involving the numerical invariants of the model system is

determined and used to construct canonical ensemble predictions, for example, of turbulent

energy spectra [17]. (This procedure has a close analogy to work in lattice field theory,

where a partition function involving a Eucidean action is sought [18]; remember though,

that the model underlying the simulation here is a continuum model, while that of lattice

gauge theory is not.) However, in non-dissipative fluid turbulence, the invariants are

quadratic sums, while the situation here is more complicated since, for example, the

interaction energy E_ is cubic in nature, and the relation (16) between the potential and the

dynamical fields introduces a term quartic in the wave functions into the energy expression.

Developing this possibility will be deferred.

In order to actually "see" the interaction, consider Figure 7. This figure indicates

the relative values of the electron's 3-D probability density I_e(x)l 2, the electromagnetic 3-

D energy density Eem(X), and the positron's 3-D probability density IWp(x)l 2, summed in

the z-direction and projected onto the x-y plane for equally spaced times during the run.

Figures 5, 6, and 7 indicate a relative change in size of the various physical fields

with time, a change which can be quantified by defining wave numbers Kep and Kem:

E k2[Pe(k)+PP (k)] E k2Pcm(k)

KZep= k , K_m- k
E [Pe(k)+Pp(k)] E Peru(k)
k k (22)

where the Pi (i=e,p,em) are given in (21). The time evolution of these root-mean-square

(rms) wave numbers are shown in Figure 8.

Although the spectra shown in Figures 5 and 6 and defined by (21), and the rms

wave numbers shown in Figure 8 and defined by (22), are determined by averaging over

14



all directions,theturbulencewhich is simulatedis not in fact isotropic.

measureof anisotropyin thex-directionasfollows:

Mx = Nxyz =

/_xt] / 2)+ (l_yXiV't 2)+ (_ztIJ 2 )

We can define a

(23)

Then measures of anisotropy in the y- and z-directions are My=Nyzx and Mz=Nzxy,

respectively, and satisfy Mx+My+Mz=0 (these measures are similar to those used in fluid

turbulence work [19]). The quantity W can be either the electron or positron wave function

or the complex electromagnetic vector A+iC. The quantities Mx, My, and Mz change with

time; in Figure 9, the evolution of these quantities for the electron (_F=Wo) is shown.

Measures of the positron and electromagnetic anisotropy behaved very similarly.

The observed anisotropy occurs because we have a mixture of "charged fluids". At

t=0 the electron and positron densities are separated, more or less, along the x-axis and are

initially motionless. Since the initial densities are composed of spherical distributions, and

have no motion, we have Mx=My=Mz=0 at t=0, according to (23), for the elctron and

positron (the electromagnetic field has a slight initial anisotropy). However, as the particles

are electrically attracted, they begin to "move" in response to one another, and this is

reflected by gradients in the x-direction increasing more quickly than gradients in the other

two directions. Hence, the anisotropy is contained in the initial conditions and manifests

itself in the direction of "plasma oscillations". Thus we have homogeneous (because the

nonlinear dynamics occurs in a periodic cell in space) but anisotropic turbulent phenomena.
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6. Conclusion

In this article,thenumericalsimulationof anonlinearquantummechanicallepton-

photoninteractionhasbeendescribed.This simulationwasperformedusinga truncated

spatialFouriermethodto marchtheclassicalsystemequationsforwardin time. It wasseen

thatthe interactionwashighly nonlinear,andthatthetime-evolutionof thewavefunctions

couldbedescribedas'turbulent',whentheinteractionwasnominally "strong"(i.e., _c=l).

Conversely,if settingn--1 resultsin therapid transferof probability andenergybetween

spatialmodes,thenthis setsthenatural'equilibrium' interactionscalelengthasLo= o0'_Xc

(= 0.47pm for electrons).Thatthesecloselyinteractingfermionicwavefunctionsquickly

approachedamulti-mode,dynamicequilibrium,is indicatedby thevariousFigures.

Natural extensionsof the presentwork are the following. First, propagating

electromagneticfieldscanbe introducedinto the initial conditionsto examine their effects

on the behavior of the system. Second higher resolution (e. g., 643) runs can be

performed, perhaps on a massively parallel processing system. Third, a statistical theory

based on a classical partition function involving system invariants can be developed.

Fourth, the work can be extended to encompass nonabelian gauge fields. This last

possibility is an intriguing one as it could provide a non-perturbative method for studying

few-body interactions in such quantum systems as the quark-gluon plasma.

The classical results described here pertain only to a quantum mechanical system of

interacting single particles. A multiparticle treatment must, of course, be based on quantum

field theory, as has been done, for example, by Bialynicki-Birula, et al. [7]. The main

intent here, however, was to demonstrate highly nonlinear behavior in a quantum

mechanical system and to present a numerical method for observing that behavior. In so

doing, we have shown that a microscopic quantum mechanical system and macroscopic

classical system (such as a fluid) have a common mechanism, i.e., a parameteric non-linear

coupling, which can induce a host of interesting phenomena (such as turbulence) into the

dynamical behavior of either system.
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